Discovery of s-process enhanced stars in the LAMOST survey

Author:

Norfolk Brodie J1,Casey Andrew R23ORCID,Karakas Amanda I2ORCID,Miles Matthew T2,Kemp Alex J2,Schlaufman Kevin C4ORCID,Ness Melissa5,Ho Anna Y Q6,Lattanzio John C2,Ji Alexander P7

Affiliation:

1. Centre for Astrophysics and Supercomputing (CAS), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

2. Monash Centre for Astrophysics (MoCA) and School of Physics and Astronomy, Monash University, Clayton Vic 3800, Australia

3. Faculty of Information Technology, Monash University, Clayton 3800, Victoria, Australia

4. Department of Physics and Astronomy, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA

5. Department of Astronomy, Columbia University, 550 West 120th Street New York, NY 10027, USA

6. Cahill Center for Astrophysics, California Institute of Technology, MC 249-17, 1200 E California Blvd, Pasadena, CA 91125, USA

7. The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101, USA

Abstract

ABSTRACT Here we present the discovery of 895 s-process-rich candidates from 454 180 giant stars observed by the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) using a data-driven approach. This sample constitutes the largest number of s-process enhanced stars ever discovered. Our sample includes 187 s-process-rich candidates that are enhanced in both barium and strontium, 49 stars with significant barium enhancement only and 659 stars that show only a strontium enhancement. Most of the stars in our sample are in the range of effective temperature and log g typical of red giant branch (RGB) populations, which is consistent with our observational selection bias towards finding RGB stars. We estimate that only a small fraction (∼0.5 per cent) of binary configurations are favourable for s-process enriched stars. The majority of our s-process-rich candidates (95 per cent) show strong carbon enhancements, whereas only five candidates (<3  per cent) show evidence of sodium enhancement. Our kinematic analysis reveals that 97 per cent of our sample are disc stars, with the other 3 per cent showing velocities consistent with the Galactic halo. The scaleheight of the disc is estimated to be $z_{\rm h}=0.634 \pm {0.063}\, \mathrm{kpc}$, comparable with values in the literature. A comparison with yields from asymptotic giant branch (AGB) models suggests that the main neutron source responsible for the Ba and Sr enhancements is the 13C(α,n)16O reaction. We conclude that s-process-rich candidates may have received their overabundances via mass transfer from a previous AGB companion with an initial mass in the range $1\!-\!3\, \mathrm{M}_{\odot }$.

Funder

Australian Research Council

National Science Foundation

NASA

Hubble Fellowship

Space Telescope Science Institute

Chinese Academy of Sciences

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3