Affiliation:
1. Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
2. INAF – Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova, Italy
Abstract
ABSTRACT
At redshift z > 5, the far-infrared (FIR) continuum spectra of main-sequence galaxies are sparsely sampled, often with a single data point. The dust temperature Td,SED, thus has to be assumed in the FIR continuum fitting. This introduces large uncertainties regarding the derived dust mass (Md), FIR luminosity, and obscured fraction of the star formation rate. These are crucial quantities to quantify the effect of dust obscuration in high-z galaxies. To overcome observation limitations, we introduce a new method that combines dust continuum information with the overlying [C $\scriptstyle \rm II$] 158 µm line emission. By breaking the Md–Td,SED degeneracy, with our method, we can reliably constrain the dust temperature with a single observation at 158 µm. This method can be applied to all Atacama Large Millimeter Array (ALMA) and NOEMA [C $\scriptstyle \rm II$] observations, and exploited in ALMA Large Programs such as ALPINE and REBELS targeting [C $\scriptstyle \rm II$] emitters at high-z. We also provide a physical interpretation of the empirical relation recently found between molecular gas mass and [C $\scriptstyle \rm II$] luminosity. We derive an analogous relation linking the total gas surface density and [C $\scriptstyle \rm II$] surface brightness. By combining the two, we predict the cosmic evolution of the surface density ratio $\Sigma _{\rm H_2} / \Sigma _{\rm gas}$. We find that $\Sigma _{\rm H_2} / \Sigma _{\rm gas}$ slowly increases with redshift, which is compatible with current observations at 0 < z < 4.
Funder
H2020 European Research Council
Alexander von Humboldt-Stiftung
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献