Ultracool dwarfs observed with the Spitzer infrared spectrograph – II. Emergence and sedimentation of silicate clouds in L dwarfs, and analysis of the full M5–T9 field dwarf spectroscopic sample

Author:

Suárez Genaro1ORCID,Metchev Stanimir12ORCID

Affiliation:

1. Department of Physics and Astronomy, The University of Western Ontario , 1151 Richmond St, London, Ontario N6A 3K7, Canada

2. Institute for Earth and Space Exploration, The University of Western Ontario , 1151 Richmond St, London, Ontario N6A 3K7, Canada

Abstract

ABSTRACT We present a uniform analysis of all mid-infrared R ≈ 90 spectra of field M5–T9 dwarfs obtained with the Spitzer Infrared Spectrograph (IRS). The sample contains 113 spectra out of which 12 belong to late-M dwarfs, 69 to L dwarfs, and 32 to T dwarfs. Sixty-eight of these spectra are presented for the first time. We measure strengths of the main absorption bands in the IRS spectra, namely H2O at 6.25 $\rm{\mu m}$, CH4 at 7.65 $\rm{\mu m}$, NH3 at 10.5 $\rm{\mu m}$, and silicates over 8–11 $\rm{\mu m}$. Water absorption is present in all spectra and strengthens with spectral type. The onset of methane and ammonia occurs at the L8 and T2.5 types, respectively, although ammonia can be detectable as early as T1.5. Silicate absorption sets in at spectral type L2, is on average the strongest in L4–L6 dwarfs, and disappears past L8. However, silicate absorption can also be absent from the spectra at any L subtype. We find a positive correlation between the silicate absorption strength and the excess (deviation from median) near-infrared colour at a given L subtype, which supports the idea that variations of silicate cloud thickness produce the observed colour scatter in L dwarfs. We also find that variable L3–L7 dwarfs are twice more likely to have above-average silicate absorption than non-variables. The ensemble of results solidifies the evidence for silicate condensate clouds in the atmospheres of L dwarfs, and for the first time observationally establishes their emergence and sedimentation between effective temperatures of ≈2000 and ≈1300 K, respectively.

Funder

Jet Propulsion Laboratory

California Institute of Technology

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3