Thermodynamics of the condensation of dust grains in Wolf–Rayet stellar winds

Author:

Gupta Anuj1ORCID,Sahijpal Sandeep1ORCID

Affiliation:

1. Department of Physics, Panjab University, Chandigarh 160014, India

Abstract

ABSTRACT Wolf–Rayet (WR) stars are the evolutionary phases of very massive stars prior to the final supernova explosion stage. These stars lose substantial mass during the WN and WC stages. The mass losses are associated with diverse elemental and isotopic signatures that represent distinct stellar evolutionary processes. WR strong winds can host environments favourable for the condensation of dust grains with diverse compositions. The condensation of dust in the outflows of massive stars is supported by a number of observations. The present work is an attempt to develop a theoretical framework for the thermodynamics associated with the condensation of dust grains in the winds of the WN and WC phases. A novel numerical code has been developed for dust condensation. In addition to the equilibrium dust condensation calculations, we have attempted, perhaps for the first time, a set of non-equilibrium scenarios for dust condensation in various WR stages. These scenarios differ in terms of the magnitude of the non-equilibrium state, defined in terms of a simulation non-equilibrium parameter. Here, we attempt to understand the effect of the simulation non-equilibrium parameter on the condensation sequence of dust grains. In general, we found that mostly C (graphite), TiC, SiC, AlN, CaS and Fe-metal are condensed in WR winds. The extent of non-equilibrium influences the relative proportions of the earliest dust condensate compared with the condensates formed at later stages subsequent to the cooling of the gas. The results indicate that dust grains that are condensed in the WC phase may make a substantial contribution of carbon-rich dust grains to the interstellar medium.

Funder

CSIR

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effect of thermal non-equilibrium on kinetic nucleation;Astronomy & Astrophysics;2023-03

2. Revealing Efficient Dust Formation at Low Metallicity in Extragalactic Carbon-rich Wolf-Rayet Binaries;The Astrophysical Journal;2021-03-01

3. Thermodynamics of dust condensation around the dimming Betelgeuse;Monthly Notices of the Royal Astronomical Society: Letters;2020-06-10

4. Origin and evolution of the Galactic inventories of interstellar dust and its composition;Monthly Notices of the Royal Astronomical Society;2020-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3