Classification of periodic variable stars with novel cyclic-permutation invariant neural networks

Author:

Zhang Keming1ORCID,Bloom Joshua S12

Affiliation:

1. Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA

2. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4206, Berkeley, CA 94720, USA

Abstract

ABSTRACT We present Cyclic-Permutation Invariant Neural Networks, a novel class of neural networks (NNs) designed to be invariant to phase shifts of period-folded periodic sequences by means of ‘symmetry padding’. In the context of periodic variable star light curves, initial phases are exogenous to the physical origin of the variability and should thus be immaterial to the downstream inference application. Although previous work utilizing NNs commonly operated on period-folded light curves, no approach to date has taken advantage of such a symmetry. Across three different data sets of variable star light curves, we show that two implementations of Cyclic-Permutation Invariant Networks—iTCN and iResNet—consistently outperform state-of-the-art non-invariant baselines and reduce overall error rates by between 4 to 22 per cent. Over a 10-class OGLE-III sample, the iTCN/iResNet achieves an average per-class accuracy of 93.4 per cent/93.3 per cent, compared to recurrent NN/random forest accuracies of 70.5 per cent/89.5 per cent in a recent study using the same data. Finding improvement on a non-astronomy benchmark, we suggest that the methodology introduced here should also be applicable to a wide range of science domains where periodic data abounds.

Funder

NSF

Brinson Foundation

Moore Foundation

Amazon Web Services

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3