About the modelling of the SED for the inner boundary of protoplanetary discs at the lower stellar mass regime

Author:

Morales-Gutiérrez Sebastián1ORCID,Nagel Erick1,Barragan Oscar12ORCID

Affiliation:

1. Departamento de Astronomía, Universidad de Guanajuato, Callejón de Jalisco s/n, Guanajuato 36023, México

2. Sub-department of Astrophysics, Department of Physics, University of Oxford, Oxford OX1 3RH, UK

Abstract

ABSTRACT In order to improve the physical interpretation about innermost dusty regions in protoplanetary discs around brown dwarf (BD), and even very low mass star (VLMS), we present a grid of models taking into account two different sets: (i) The set called standard model, that simulates an axisymmetric dusty disc with an inner curved wall. (ii) The perturbed one called non-standard where the axisymmetry of the inner edge has been broken. We have achieved a fitting for the disc structure able to explain the spectral energy distribution (SED). As the main condition, we assume that the changes of the inner wall geometry in the tongue-like shape depend on the Rayleigh–Taylor instability (R-TIns) generated in the inner disc edge. For each object, we parametrize the shape of the inner wall to find a time-dependent model that enables us to explain the photometric near-Infrared variability and connect the changes on the inner disc structure with the amplitude of such variability. We re-analysed photometric measurements from near to mid-infrared wavelengths of a sample of 6 BDs and one VLMS in different cloud associations which were previously studied by other authors. We also show that the flux change calculated between the non-standard and the standard configurations models the observed variability in LRLL 1679. The magnitude changes due to these fluctuations slightly depend on the wavelength and they can present differences of up to 0.9 mag. We suggest that if the R-TIns persist enough time, the features in the protoplanetary inner disc, e.g. inner holes or gaps evolve.

Funder

CONACYT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3