Rapid formation of super-Earths around low-mass stars

Author:

Zawadzki Brianna12ORCID,Carrera Daniel123ORCID,Ford Eric B124ORCID

Affiliation:

1. Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802, USA

2. Center for Exoplanets and Habitable Worlds, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802, USA

3. Department of Physics and Astronomy, Iowa State University, Ames, IA 50010, USA

4. Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA 16802, USA

Abstract

ABSTRACT NASA’s TESS mission is expected to discover hundreds of M dwarf planets. However, few studies focus on how planets form around low-mass stars. We aim to better characterize the formation process of M dwarf planets to fill this gap and aid in the interpretation of TESS results. We use ten sets of N-body planet formation simulations that vary in whether a gas disc is present, initial range of embryo semimajor axes, and initial solid surface density profile. Each simulation begins with 147 equal-mass embryos around a 0.2 solar mass star and runs for 100 Myr. We find that planets form rapidly, with most collisions occurring within the first 1 Myr. The presence of a gas disc reduces the final number of planets relative to a gas-free environment and causes planets to migrate inward. We find that roughly a quarter of planetary systems experience their final giant impact inside the gas disc, suggesting that some super-Earths may be able to reaccrete an extended gaseous envelope after their final giant impact, though these may be affected by additional processes such as photoevaporation. In addition, we find that the final distribution of planets does not retain a memory of the slope of the initial surface density profile, regardless of whether or not a gas disc is present. Thus, our results suggest that present-day observations are unlikely to provide sufficient information to accurately reverse-engineer the initial distribution of solids.

Funder

National Aeronautics and Space Administration

Simons Foundation

Ambrose Monell Foundation

Institute for Advanced Study

Pennsylvania State University

Pennsylvania Space Grant Consortium

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3