On the evolution of a binary system with arbitrarily misaligned orbital and stellar angular momenta due to quasi-stationary tides

Author:

Ivanov P B1,Papaloizou J C B2

Affiliation:

1. Astro Space Centre, P.N. Lebedev Physical Institute, 84/32 Profsoyuznaya Street, Moscow 117997, Russia

2. DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

Abstract

ABSTRACT We consider the evolution of a binary system interacting due to tidal effects without restriction on the orientation of the orbital, and where significant, spin angular momenta, and orbital eccentricity. We work in the low tidal forcing frequency regime in the equilibrium tide approximation. Internal degrees of freedom are fully taken into account for one component, the primary. In the case of the companion the spin angular momentum is assumed small enough to be neglected but internal energy dissipation is allowed for as this can be significant for orbital circularization in the case of planetary companions. We obtain a set of equations governing the evolution of the orbit resulting from tidal effects. These depend on the masses and radii of the binary components, the form and orientation of the orbit, and for each involved component, the spin rate, the Coriolis force, the normalized rate of energy dissipation associated with the equilibrium tide due to radiative processes and viscosity, and the classical apsidal motion constant, k2. These depend on stellar parameters with no need of additional assumptions or a phenomenological approach as has been invoked in the past. They can be used to determine the evolution of systems with initial significant misalignment of spin and orbital angular momenta as hypothesized for systems containing Hot Jupiters. The inclusion of the Coriolis force may lead to evolution of the inclination between orbital and spin angular momenta and precession of the orbital plane which may have observational consequences.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3