Affiliation:
1. Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
Abstract
ABSTRACT
A magnetic disc wind is an important mechanism that may be responsible for driving accretion and structure formation in protoplanetary discs. Recent numerical simulations have shown that these winds can take either the traditional ‘hourglass’ symmetry about the mid-plane, or a ‘slanted’ symmetry dominated by a mid-plane toroidal field of a single sign. The formation of this slanted symmetry state has not previously been explained. We use radially local 1D vertical shearing box simulations to assess the importance of large-scale MRI channel modes in influencing the formation and morphologies of these wind solutions. We consider only Ohmic resistivity and explore the effect of different magnetizations, with the mid-plane β parameter ranging from 105 to 102. We find that our magnetic winds go through three stages of development: cyclic, transitive, and steady, with the steady wind taking a slanted symmetry profile similar to those observed in local and global simulations. We show that the cycles are driven by periodic excitation of the n = 2 or 3 MRI channel mode coupled with advective eviction, and that the transition to the steady wind is caused by a much more slowly growing n = 1 mode altering the wind structure. Saturation is achieved through a combination of advective damping from the strong wind, and suppression of the instability due to a strong toroidal field. A higher disc magnetization leads to a greater tendency towards, and more rapid settling into the slanted symmetry steady wind, which may have important implications for mass and flux transport processes in protoplanetary discs.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献