Physical conditions in the diffuse interstellar medium of local and high-redshift galaxies: measurements based on the excitation of H2 rotational and C i  fine-structure levels

Author:

Klimenko V V1ORCID,Balashev S A1ORCID

Affiliation:

1. Ioffe Institute, Polytekhnicheskaya ul. 26, 194021 Saint Petersburg, Russia

Abstract

ABSTRACT We present the results of an analysis of the physical conditions (number density, intensity of UV field, kinetic temperature) in the cold H2-bearing interstellar medium of local and high-redshift galaxies. Our measurements are based on the fit to the observed population of H2 rotational levels and C i  fine-structure levels with the help of grids of numerical models calculated with the photon-dominated region (PDR) Meudon code. A joint analysis of low H2 rotational levels and C i  fine-structure levels breaks the degeneracy in the IUV−nH plane and provides significantly tighter constraints on the number density and intensity of the UV field. Using archive data from the VLT/UVES, KECK/HIRES, HST/STIS and FUSE telescopes, we selected 12 high-redshift damped Lyα systems (DLAs) in quasar spectra and 14 H2 absorption systems along the lines of sight towards stars in the Milky Way and the Magellanic Cloud galaxies. These systems have strong H2 components, with a column density log N(H2)/[cm−2] > 18 and associated C i  absorptions. We find that H2-bearing media in high-redshift DLAs and in local galaxies have similar values of the kinetic temperatures Tkin ∼ 100 K and number density 10−500 cm−3. However, the intensity of incident UV radiation in DLAs varies in a wide range (0.1−100 units of the Mathis field), while it is ∼0.1−3 units of the Mathis field for H2 systems in the Milky Way and Large and Small Magellanic Cloud galaxies. The large dispersion of measured UV flux in DLAs is probably a consequence of the fact that the DLA sample probes galaxies selected from the overall galaxy population at high redshift, and therefore corresponds to a wide range of physical conditions.

Funder

Russian Foundation for Basic Research

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3