Spectral redundancy for calibrating interferometers and suppressing the foreground wedge in 21 cm cosmology

Author:

Cox Tyler A12ORCID,Parsons Aaron R12,Dillon Joshua S12ORCID,Ewall-Wice Aaron12ORCID,Pascua Robert3ORCID

Affiliation:

1. Department of Astronomy, University of California , Berkeley, CA 94720 , USA

2. Radio Astronomy Laboratory, University of California , Berkeley, CA 94720 , USA

3. Department of Physics and Trottier Space Institute, McGill University , Montreal, QC H3A 2T8 , Canada

Abstract

ABSTRACT Observations of 21 cm line from neutral hydrogen promise to be an exciting new probe of astrophysics and cosmology during the Cosmic Dawn and through the Epoch of Reionization (EoR) to when dark energy accelerates the expansion of our Universe. At each of these epochs, separating bright foregrounds from the cosmological signal is a primary challenge that requires exquisite calibration. In this paper, we present a new calibration method called nucal that extends redundant-baseline calibration, allowing spectral variation in antenna responses to be solved for by using correlations between visibilities measuring the same angular Fourier modes at different frequencies. By modelling the chromaticity of the beam-weighted sky with a tunable set of discrete prolate spheroidal sequences, we develop a calibration loop that optimizes for spectrally smooth calibrated visibilities. Crucially, this technique does not require explicit models of the sky or the primary beam. With simulations that incorporate realistic source and beam chromaticity, we show that this method solves for unsmooth bandpass features, exposes narrow-band interference systematics, and suppresses smooth-spectrum foregrounds below the level of 21 cm reionization models, even within much of the so-called wedge region where current foreground mitigation techniques struggle. We show that this foreground subtraction can be performed with minimal cosmological signal loss for certain well-sampled angular Fourier modes, making spectral-redundant calibration a promising technique for current and next-generation 21 cm intensity mapping experiments.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

National Research Foundation

NSF

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3