Damping wing absorption associated with a giant Ly α trough at z < 6: direct evidence for late-ending reionization

Author:

Becker George D1ORCID,Bolton James S2ORCID,Zhu Yongda13ORCID,Hashemi Seyedazim1ORCID

Affiliation:

1. Department of Physics & Astronomy, University of California , Riverside, CA 92521 , USA

2. School of Physics and Astronomy, University of Nottingham, University Park , Nottingham NG7 2RD , UK

3. Steward Observatory, University of Arizona , 933 N Cherry Ave, Tucson, AZ 85721 , USA

Abstract

ABSTRACT Multiple observations now suggest that the hydrogen reionization may have ended well below redshift six. While there has previously been no conclusive proof of extended neutral islands in the $z \lt 6$ intergalactic medium, it is possible that such islands give rise to the giant Ly $\alpha$ absorption troughs seen in the spectra of high-redshift quasars. Here, we present evidence that the deepest and longest known Ly $\alpha$ trough at $z \,\lt\, 6$, towards ULAS J0148 + 0600 (J0148), is associated with damping wing absorption. The evidence comes from a window of strong Ly $\alpha$ transmission at the edge of the J0148 proximity zone. We show that the relatively smooth profile of this transmission window is highly unlikely to arise from resonant absorption alone, but is consistent with the presence of a damping wing. We further argue that the damping wing is unlikely to arise from a compact source due to the lack of associated metal lines, and is more likely to arise from an extended neutral island associated with the giant Ly $\alpha$ trough. We investigate the physical conditions that may give rise to the strong transmission window, and speculate that it may signal an usually deep void, nearby ionizing sources, and/or the recent passage of an ionization front.

Funder

National Science Foundation

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3