Break-up of the synchronous state of binary asteroid systems

Author:

Wang Hai-Shuo123ORCID,Hou Xi-Yun123

Affiliation:

1. School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China

2. Institute of Space Environment and Astronautics, Nanjing University, Nanjing 210093, China

3. Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing 210093, China

Abstract

ABSTRACT This paper continues the authors’ previous work and presents a coplanar averaged ellipsoid–ellipsoid model of synchronous binary asteroid system (BAS) plus thermal and tidal effects. Using this model, we analyse the break-up mechanism of the synchronous BAS. Different from the classical spin-orbit coupling model that neglects the rotational motion’s influence on the orbital motion, our model considers simultaneously the orbital motion and the rotational motions. Our findings are as follows: (1) Stable region of the secondary’s synchronous state is mainly up to the secondary’s shape. The primary’s shape has little influence on it. (2) The stable region shrinks continuously with the increasing value of the secondary’s shape parameter aB/bB. Beyond the value of $a_B/b_B=\sqrt{2}$, the planar stable region for the secondary’s synchronous rotation is small but not zero. (3) Considering the BYORP torque, our model shows agreement with the 1-degree-of-freedom adiabatic invariance theory in the outwards migration process, but an obvious difference in the inwards migration process. In particular, our studies show that the so-called ‘long-term’ stable equilibrium between the BYORP torque and the tidal torque is never a real equilibrium state, although the BAS can be captured in this state for quite a long time. (4) In case that the primary’s angular velocity gradually reduces due to the YORP effect, the secondary’s synchronous state may be broken when the primary’s rotational motion crosses some major spin-orbit resonances.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3