Signatures of bimodality in nebular phase Type Ia supernova spectra

Author:

Vallely P J1ORCID,Tucker M A2,Shappee B J2,Brown J S13,Stanek K Z14,Kochanek C S14

Affiliation:

1. Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA

2. Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

3. Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA

4. Center for Cosmology and AstroParticle Physics, The Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210, USA

Abstract

ABSTRACT One observational prediction for Type Ia supernovae (SNe Ia) explosions produced through white dwarf–white dwarf collisions is the presence of bimodal velocity distributions for the 56Ni decay products, although this signature can also be produced by an off-centre ignition in a delayed detonation explosion. These bimodal velocity distributions can manifest as double-peaked or flat-topped spectral features in late-time spectroscopic observations for favourable viewing angles. We present nebular-phase spectroscopic observations of 17 SNe Ia obtained with the Large Binocular Telescope. Combining these observations with an extensive search of publicly available archival data, we collect a total sample of 48 SNe Ia and classify them based on whether they show compelling evidence for bimodal velocity profiles in three features associated with 56Ni decay products: the [Fe ii] and [Fe iii] feature at ∼5300 Å, the [Co iii] λ5891 feature, and the [Co iii] and [Fe ii] feature at ∼6600 Å. We identify nine bimodal SNe in our sample, and we find that these SNe have average peak MV about 0.3 mag fainter than those that do not. This is consistent with theoretical predictions for explosions created by nearly head-on collisions of white dwarfs due to viewing angle effects and 56Ni yields.

Funder

NSF

Ohio Board of Regents

Gordon and Betty Moore Foundation

Mt. Cuba Astronomical Foundation

Villum Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3