Physical properties of the CDFS X-ray sources through fitting spectral energy distributions

Author:

Guo Xiaotong12,Gu Qiusheng12,Ding Nan12,Contini E12,Chen Yongyun3

Affiliation:

1. School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093, China

2. Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, China

3. College of Physics and Electronic Engineering, Qujing Normal University, Qujing 655011, China

Abstract

ABSTRACT The physical parameters of galaxies and/or active galactic nucleus (AGNs) can be derived by fitting their multiband spectral energy distributions (SEDs). By using cigale code, we perform multiband SED fitting (from ultraviolet to infrared) for 791 X-ray sources (518 AGNs and 273 normal galaxies) in the 7 Ms Chandra Deep Field-south survey (CDFS). We consider the contributions from AGNs and adopt more accurate redshifts than published before. Therefore, more accurate star formation rates (SFRs) and stellar masses (M*) are derived. We classify the 518 AGNs into type-I and type-II based on their optical spectra and their SEDs. Moreover, six AGN candidates are selected from the 273 normal galaxies based on their SEDs. Our main results are as follows: (1) the host galaxies of AGNs have larger M* than normal galaxies, implying that AGNs prefer to host in massive galaxies; (2) the specific star formation rates (sSFRs) of AGN host galaxies are different from those of normal galaxies, suggesting that AGN feedback may play an important role in the star formation activity; (3) we find that the fraction of optically obscured AGNs in CDFS decreases with the increase of intrinsic X-ray luminosity, which is consistent with previous studies; and (4) the host galaxies of type-I AGNs tend to have lower M* than type-II AGNs, which may suggest that dust in the host galaxy may also contribute to the optical obscuration of AGNs.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3