A dynamics-based density profile for dark haloes – I. Algorithm and basic results

Author:

Diemer Benedikt1ORCID

Affiliation:

1. Department of Astronomy, University of Maryland, College Park, MD 20742, USA

Abstract

ABSTRACT The density profiles of dark matter haloes can potentially probe dynamics, fundamental physics, and cosmology, but some of the most promising signals reside near or beyond the virial radius. While these scales have recently become observable, the profiles at large radii are still poorly understood theoretically, chiefly because the distribution of orbiting matter (the one-halo term) is partially concealed by particles falling into haloes for the first time. We present an algorithm to dynamically disentangle the orbiting and infalling contributions by counting the pericentric passages of billions of simulation particles. We analyse dynamically split profiles out to 10 R200m across a wide range of halo mass, redshift, and cosmology. We show that the orbiting term experiences a sharp truncation at the edge of the orbit distribution. Its sharpness and position are mostly determined by the mass accretion rate, confirming that the entire profile shape primarily depends on halo dynamics and secondarily on mass, redshift, and cosmology. The infalling term also depends on the accretion rate for fast-accreting haloes but is mostly set by the environment for slowly accreting haloes, leading to a diverse array of shapes that does not conform to simple theoretical models. While the resulting scatter in the infalling term reaches 1 dex, the scatter in the orbiting term is only between 0.1 and 0.4 dex and almost independent of radius. We demonstrate a tight correspondence between the redshift evolution in Λ cold dark matter (ΛCDM) and the slope of the matter power spectrum. Our code and data are publicly available.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3