Inelastic processes in oxygen–hydrogen collisions

Author:

Belyaev A K1ORCID,Voronov Ya V1,Mitrushchenkov A2,Guitou M2,Feautrier N3

Affiliation:

1. Department of Theoretical Physics and Astronomy, Herzen University, Moika 48, St Petersburg 191186, Russia

2. Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208, CNRS, UPEC, UPEM, 5 Bd Descartes, Champs-sur-Marne, F-77454 Marne la Vallée, France

3. LERMA, Observatoire de Paris, Sorbonne University, UPMC Univ. Paris 06, CNRS-UMR 8112, F-92195 Meudon, France

Abstract

ABSTRACT New accurate theoretical rate coefficients for (de)-excitation and charge transfer in low-energy O + H, O+ + H− and O− + H+ collisions are reported. The calculations of cross-sections and rate coefficients are performed by means of the quantum probability current method, using full configuration interaction ab initio electronic structure calculations that provide a global description of all 43 lowest molecular states from short to asymptotic internuclear distances. Thus, both long- and short-range non-adiabatic regions are taken into account for the first time. All the doublet, quartet and sextet OH molecular states, with excitation energy asymptotes up to 12.07 eV, as well as the two lowest ionic states with the asymptotes O−H+ and O+H− are treated. Calculations are performed for the collision energy range 0.01–100eV and the temperature range 1 000–10 000 K. The mechanisms underlying the processes are analysed: it is shown that the largest rate coefficients, with values exceeding 10−8 cm3 s−1, are due to ionic–covalent interactions present at large internuclear distances, while short-range interactions play an important role for rates with moderate values involved in (de)-excitation processes. As a consequence, a comparison of the present data with previously published results shows that differences of up to several orders of magnitude exist for rate coefficients with moderate values. It is worth pointing out the relatively large rate coefficients for triplet–quintuplet oxygen transitions, as well as for transitions between the O$(\rm 2p^{3}3s\, ^{5}$So) and O$(\rm 2p^{3}3p\, ^{5}$P) levels of the oxygen triplet and H(n = 2) levels. The calculated data are important for modelling stellar spectra, leading to accurate oxygen abundances.

Funder

Centre National de la Recherche Scientifique

Grand Équipement National De Calcul Intensif

Ministry of Micro, Small and Medium Industries

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3