Power-law energy distributions of small-scale impulsive events on the active Sun: results from IRIS

Author:

Vilangot Nhalil Nived12ORCID,Nelson Chris J2ORCID,Mathioudakis Mihalis2,Doyle J Gerry1,Ramsay Gavin1

Affiliation:

1. Armagh Observatory & Planetarium, College Hill, Armagh BT61 9DG, UK

2. Astrophysics Research Centre (ARC), School of Mathematics and Physics, Queens University, Belfast BT7 1NN, Northern Ireland, UK

Abstract

ABSTRACT Numerous studies have analysed inferred power-law distributions between frequency and energy of impulsive events in the outer solar atmosphere in an attempt to understand the predominant energy supply mechanism in the corona. Here, we apply a burst detection algorithm to high-resolution imaging data obtained by the Interface Region Imaging Spectrograph to further investigate the derived power-law index, γ, of bright impulsive events in the transition region. Applying the algorithm with a constant minimum event lifetime (of either 60 s or 110 s) indicated that the target under investigation, such as Plage and Sunspot, has an influence on the observed power-law index. For regions dominated by sunspots, we always find γ < 2; however, for data sets where the target is a plage region, we often find that γ > 2 in the energy range (∼1023, ∼1026) erg. Applying the algorithm with a minimum event lifetime of three time-steps indicated that cadence was another important factor, with the highest cadence data sets returning γ > 2 values. The estimated total radiative power obtained for the observed energy distributions is typically 10–25 per cent of what would be required to sustain the corona indicating that impulsive events in this energy range are not sufficient to solve coronal heating. If we were to extend the power-law distribution down to an energy of 1021 erg, and assume parity between radiative energy release and the deposition of thermal energy, then such bursts could provide 25–50 per cent of the required energy to account for the coronal heating problem.

Funder

Armagh Observatory

Incorporated Research Institutions for Seismology

National Aeronautics and Space Administration

Ecological Society of America

American Institute of Architects

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3