Affiliation:
1. Armagh Observatory & Planetarium, College Hill, Armagh BT61 9DG, UK
2. Astrophysics Research Centre (ARC), School of Mathematics and Physics, Queens University, Belfast BT7 1NN, Northern Ireland, UK
Abstract
ABSTRACT
Numerous studies have analysed inferred power-law distributions between frequency and energy of impulsive events in the outer solar atmosphere in an attempt to understand the predominant energy supply mechanism in the corona. Here, we apply a burst detection algorithm to high-resolution imaging data obtained by the Interface Region Imaging Spectrograph to further investigate the derived power-law index, γ, of bright impulsive events in the transition region. Applying the algorithm with a constant minimum event lifetime (of either 60 s or 110 s) indicated that the target under investigation, such as Plage and Sunspot, has an influence on the observed power-law index. For regions dominated by sunspots, we always find γ < 2; however, for data sets where the target is a plage region, we often find that γ > 2 in the energy range (∼1023, ∼1026) erg. Applying the algorithm with a minimum event lifetime of three time-steps indicated that cadence was another important factor, with the highest cadence data sets returning γ > 2 values. The estimated total radiative power obtained for the observed energy distributions is typically 10–25 per cent of what would be required to sustain the corona indicating that impulsive events in this energy range are not sufficient to solve coronal heating. If we were to extend the power-law distribution down to an energy of 1021 erg, and assume parity between radiative energy release and the deposition of thermal energy, then such bursts could provide 25–50 per cent of the required energy to account for the coronal heating problem.
Funder
Armagh Observatory
Incorporated Research Institutions for Seismology
National Aeronautics and Space Administration
Ecological Society of America
American Institute of Architects
Science and Technology Facilities Council
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献