A hierarchical Bayesian SED model for Type Ia supernovae in the optical to near-infrared

Author:

Mandel Kaisey S123ORCID,Thorp Stephen1,Narayan Gautham45ORCID,Friedman Andrew S6ORCID,Avelino Arturo7ORCID

Affiliation:

1. Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge CB3 0HA, UK

2. Statistical Laboratory, DPMMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK

3. The Alan Turing Institute, Euston Road, London NW1 2DB, UK

4. Department of Astronomy, University of Illinois at Urbana-Champaign, 1003 W. Green St., IL 61801, USA

5. Center for Astrophysical Surveys, National Center for Supercomputing Applications, Urbana, IL 61801, USA

6. Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093, USA

7. Center for Astrophysics, Harvard and Smithsonian, Cambridge, MA 02138, USA

Abstract

ABSTRACT While conventional Type Ia supernova (SN Ia) cosmology analyses rely primarily on rest-frame optical light curves to determine distances, SNe Ia are excellent standard candles in near-infrared (NIR) light, which is significantly less sensitive to dust extinction. An SN Ia spectral energy distribution (SED) model capable of fitting rest-frame NIR observations is necessary to fully leverage current and future SN Ia data sets from ground- and space-based telescopes including HST, LSST, JWST, and RST. We construct a hierarchical Bayesian model for SN Ia SEDs, continuous over time and wavelength, from the optical to NIR (B through H, or $0.35{-}1.8\, \mu$m). We model the SED as a combination of physically distinct host galaxy dust and intrinsic spectral components. The distribution of intrinsic SEDs over time and wavelength is modelled with probabilistic functional principal components and the covariance of residual functions. We train the model on a nearby sample of 79 SNe Ia with joint optical and NIR light curves by sampling the global posterior distribution over dust and intrinsic latent variables, SED components and population hyperparameters. Photometric distances of SNe Ia with NIR data near maximum obtain a total RMS error of 0.10 mag with our BayeSN model, compared to 0.13–0.14 mag with SALT2 and SNooPy for the same sample. Jointly fitting the optical and NIR data of the full sample up to moderate reddening (host E(B − V) < 0.4) for a global host dust law, we find RV = 2.9 ± 0.2, consistent with the Milky Way average.

Funder

STFC

European Research Council

National Science Foundation

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3