Mapping out the parameter space for photoevaporation and core-powered mass-loss

Author:

Owen James E12ORCID,Schlichting Hilke E2

Affiliation:

1. Astrophysics Group, Department of Physics, Imperial College London , Prince Consort Road, London SW7 2AZ , UK

2. Department of Earth, Planetary, and Space Sciences, University of California , Los Angeles, CA 90095 , USA

Abstract

ABSTRACT Understanding atmospheric escape in close-in exoplanets is critical to interpreting their evolution. We map out the parameter space over which photoevaporation and core-powered mass-loss dominate atmospheric escape. Generally, the transition between the two regimes is determined by the location of the Bondi radius (i.e. the sonic point of core-powered outflow) relative to the penetration depth of extreme ultra-violet (XUV) photons. Photoevaporation dominates the loss when the XUV penetration depth lies inside the Bondi radius (RXUV < RB) and core-powered mass-loss when XUV radiation is absorbed higher up in the flow (RB < RXUV). The transition between the two regimes occurs at a roughly constant ratio of the planet’s radius to its Bondi radius, with the exact value depending logarithmically on planetary and stellar properties. In general, core-powered mass-loss dominates for lower gravity planets with higher equilibrium temperatures, and photoevaporation dominates for higher gravity planets with lower equilibrium temperatures. However, planets can transition between these two mass-loss regimes during their evolution, and core-powered mass-loss can ‘enhance’ photoevaporation over a significant region of parameter space. Interestingly, a planet that is ultimately stripped by core-powered mass-loss has likely only ever experienced core-powered mass-loss. In contrast, a planet that is ultimately stripped by photoevaporation could have experienced an early phase of core-powered mass-loss. Applying our results to the observed super-Earth population suggests that it contains significant fractions of planets where each mechanism controlled the final removal of the H/He envelope, although photoevaporation appears to be responsible for the final carving of the exoplanet radius valley.

Funder

NASA

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3