Cooling-driven coagulation

Author:

Gronke Max1ORCID,Oh S Peng2

Affiliation:

1. Max Planck Institut für Astrophysik , Karl-Schwarzschild-Straße 1, D-85748 Garching bei München, Germany

2. Department of Physics, University of California , Santa Barbara, CA 93106, USA

Abstract

ABSTRACT Astrophysical gases such as the interstellar-, circumgalactic-, or intracluster-medium are commonly multiphase, which poses the question of the structure of these systems. While there are many known processes leading to fragmentation of cold gas embedded in a (turbulent) hot medium, in this work, we focus on the reverse process: coagulation. This is often seen in wind-tunnel and shearing layer simulations, where cold gas fragments spontaneously coalesce. Using 2D and 3D hydrodynamical simulations, we find that sufficiently large (≫cstcool), perturbed cold gas clouds develop pulsations which ensure cold gas mass growth over an extended period of time (≫r/cs). This mass growth efficiently accelerates hot gas which in turn can entrain cold droplets, leading to coagulation. The attractive inverse square force between cold gas droplets has interesting parallels with gravity; the ‘monopole’ is surface area rather than mass. We develop a simple analytic model which reproduces our numerical findings.

Funder

NASA

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Highly mass-loaded hot galactic winds are unstable to cool filament formation;Monthly Notices of the Royal Astronomical Society;2024-05-02

2. Strength in numbers: A multiphase wind model with multiple cloud populations;Monthly Notices of the Royal Astronomical Society;2024-05-02

3. Taming the TuRMoiL: The Temperature Dependence of Turbulence in Cloud–Wind Interactions;The Astrophysical Journal;2024-05-01

4. The survival and entrainment of molecules and dust in galactic winds;Monthly Notices of the Royal Astronomical Society;2024-04-27

5. Radiative loss and ion-neutral collisional effects in astrophysical plasmas;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3