Constraints on electron acceleration in gamma-ray bursts afterglows from radio peaks

Author:

Duncan Ruby A1,van der Horst Alexander J1,Beniamini Paz23

Affiliation:

1. Department of Physics, The George Washington University , 725 21st Street NW, Washington, DC 20052, USA

2. Department of Natural Science, The Open University of Israel , P.O. Box 808, Ra’anana 4353701, Israel

3. Astrophysics Research Center of the Open University (ARCO), The Open University of Israel , P.O. Box 808, Ra’anana 4353701, Israel

Abstract

ABSTRACT Studies of gamma-ray bursts (GRBs) and their multiwavelength afterglows have led to insights in electron acceleration and emission properties from relativistic, high-energy astrophysical sources. Broad-band modelling across the electromagnetic spectrum has been the primary means of investigating the physics behind these sources, although independent diagnostic tools have been developed to inform and corroborate assumptions made in particle acceleration simulations and broad-band studies. We present a methodology to constrain three physical parameters related to electron acceleration in GRB blast waves: the fraction of shock energy in electrons, ϵe; the fraction of electrons that gets accelerated into a power-law distribution of energies, ξe; and the minimum Lorentz factor of the accelerated electrons, γm. These parameters are constrained by observations of the peaks in radio afterglow light curves and spectral energy distributions. From a sample of 49 radio afterglows, we are able to find narrow distributions for these parameters, hinting at possible universality of the blast wave microphysics, although observational bias could play a role in this. Using radio peaks and considerations related to the prompt gamma-ray emission efficiency, we constrain the allowed parameter ranges for both ϵe and ξe to within about one order of magnitude, 0.01 ≲ ϵe ≲ 0.2 and 0.1 ≲ ξe ≲ 1. Such stringent constraints are inaccessible for ξe from broad-band studies due to model degeneracies.

Funder

George Washington University

United States-Israel Binational Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3