HFQPOs and discoseismic mode excitation in eccentric, relativistic discs. I. Hydrodynamic simulations

Author:

Dewberry Janosz W123,Latter Henrik N3,Ogilvie Gordon I3ORCID,Fromang Sebastien45

Affiliation:

1. Tsung-Dao Lee Institute, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China

2. Department of Astronomy, Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA

3. DAMTP, University of Cambridge, CMS, Wilberforce Road, Cambridge CB3 0WA, UK

4. Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Departement d’Astrophysique, CEA-Saclay, F-91191 Gif-sur-Yvette, France

5. Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France

Abstract

ABSTRACT High-frequency quasi-periodic oscillations (HFQPOs) observed in the emission of black hole X-ray binary systems promise insight into strongly curved spacetime. ‘Discoseismic’ oscillations with frequencies set by the intrinsic properties of the central black hole, in particular ‘trapped inertial waves’ (r modes), offer an attractive explanation for HFQPOs. To produce an observable signature, however, such oscillations must be excited to sufficiently large amplitudes. Turbulence driven by the magnetorotational instability fails to provide the necessary amplification, but r modes may still be excited via interaction with accretion disc warps or eccentricities. We present 3D global hydrodynamic simulations of relativistic accretion discs, which demonstrate for the first time the excitation of trapped inertial waves by an imposed eccentricity in the flow. While the r modes’ saturated state depends on the vertical boundary conditions used in our unstratified, cylindrical framework, their excitation is unambiguous in all runs with eccentricity ≳ 0.005 near the innermost stable circular orbit. These simulations provide a proof of concept, demonstrating the robustness of trapped inertial wave excitation in a non-magnetized context. In a companion paper, we explore the competition between this excitation, and damping by magnetohydrodynamic turbulence.

Funder

Vassar College

Cambridge Philosophical Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Damping of disco-seismic C-mode oscillations at the sonic radius of discs;Monthly Notices of the Royal Astronomical Society;2024-01-23

2. Truncated, tilted discs as a possible source of Quasi-Periodic Oscillations;Monthly Notices of the Royal Astronomical Society;2023-12-23

3. Linear and non-linear eccentric mode evolution in unstratified MHD discs;Monthly Notices of the Royal Astronomical Society;2023-09-06

4. Nozzle Shocks, Disk Tearing, and Streamers Drive Rapid Accretion in 3D GRMHD Simulations of Warped Thin Disks;The Astrophysical Journal;2023-09-01

5. Radiation Transport Two-temperature GRMHD Simulations of Warped Accretion Disks;The Astrophysical Journal Letters;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3