MRI turbulence in accretion discs at large magnetic Prandtl numbers

Author:

Held Loren E1,Mamatsashvili George23

Affiliation:

1. Max Planck Institute for Gravitational Physics (Albert Einstein Institute) , Am Mühlenberg 1, D-14476 Potsdam, Germany

2. Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400, D-01328 Dresden, Germany

3. E. Kharadze Georgian National Astrophysical Observatory , Abastumani 0301, Georgia

Abstract

ABSTRACT The effect of large magnetic Prandtl number Pm (the ratio of viscosity to resistivity) on the turbulent transport and energetics of the magnetorotational instability (MRI) is poorly understood, despite the realization of this regime in astrophysical environments as disparate as discs from binary neutron star (BNS) mergers, the inner regions of low-mass X-ray binaries and active galactic nuclei, and the interiors of protoneutron stars. We investigate the MRI dynamo and associated turbulence in the regime Pm > 1 by carrying out fully compressible, 3D MHD-shearing box simulations using the finite-volume code pluto, focusing mostly on the case of Keplerian shear relevant to accretion discs. We find that when the magnetic Reynolds number is kept fixed, the turbulent transport (as parameterized by α, the ratio of stress to thermal pressure) scales with the magnetic Prandtl number as α ∼ Pmδ, with δ ∼ 0.5−0.7 up to Pm ∼ 128. However, this scaling weakens as the magnetic Reynolds number is increased. Importantly, compared to previous studies, we find a new effect at very large Pm – the turbulent energy and stress begin to plateau, no longer depending on Pm. To understand these results we have carried out a detailed analysis of the turbulent dynamics in Fourier space, focusing on the effect of increasing Pm on the transverse cascade – a key non-linear process induced by the disc shear flow that is responsible for the sustenance of MRI turbulence. Finally, we find that α–Pm scaling is sensitive to the box vertical-to-radial aspect ratio, as well as to the background shear.

Funder

ERC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3