Stochastic modelling of star-formation histories I: the scatter of the star-forming main sequence

Author:

Caplar Neven1ORCID,Tacchella Sandro2ORCID

Affiliation:

1. Department of Astrophysical Sciences, Princeton University, 4 Ivy Ln., Princeton, NJ 08544, USA

2. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Abstract

ABSTRACT We present a framework for modelling the star-formation histories of galaxies as a stochastic process. We define this stochastic process through a power spectrum density with a functional form of a broken power law. Star-formation histories are correlated on short time-scales, the strength of this correlation described by a power-law slope, α, and they decorrelate to resemble white noise over a time-scale that is proportional to the time-scale of the break in the power spectrum density, τbreak. We use this framework to explore the properties of the stochastic process that, we assume, gives rise to the log-normal scatter about the relationship between star-formation rate and stellar mass, the so-called galaxy star-forming main sequence. Specifically, we show how the measurements of the normalization and width (σMS) of the main sequence, measured in several passbands that probe different time-scales, give a constraint on the parameters of the underlying power spectrum density. We first derive these results analytically for a simplified case where we model observations by averaging over the recent star-formation history. We then run numerical simulations to find results for more realistic observational cases. As a proof of concept, we use observational estimates of the main sequence scatter at z ∼ 0 and M⋆ ≈ 1010 M⊙ measured in H α, UV+IR, and the u-band. The result is degenerate in the τbreak-α space, but if we assume α = 2, we measure $\tau _{\rm break}=170^{+169}_{-85}~\mathrm{Myr}$. This implies that star-formation histories of galaxies lose ‘memory’ of their previous activity on a time-scale of ∼200 Myr.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3