Stacked CMB lensing and ISW signals around superstructures in the DESI Legacy Survey

Author:

Hang Qianjun1,Alam Shadab1ORCID,Cai Yan-Chuan1,Peacock John A1ORCID

Affiliation:

1. Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK

Abstract

ABSTRACT The imprints of large-scale structures on the Cosmic Microwave Background (CMB) can be studied via the CMB lensing and Integrated Sachs–Wolfe (ISW) signals. In particular, the stacked ISW signal around supervoids has been claimed in several works to be anomalously high. In this study, we find cluster and void superstructures using four tomographic redshift bins with 0 < z < 0.8 from the DESI Legacy Survey and measure the stacked CMB lensing and ISW signals around them. To compare our measurements with ΛCDM model predictions, we construct a mock catalogue with matched galaxy number density and bias and apply the same photo-z uncertainty as the data. The consistency between the mock and the data is verified via the stacked galaxy density profiles around the superstructures and their quantity. The corresponding lensing convergence and ISW maps are then constructed and compared. The stacked lensing signal agrees with data well except at the highest redshift bin in density peaks, where the mock prediction is significantly higher, by approximately a factor of 1.3. The stacked ISW signal is generally consistent with the mock prediction. We do not obtain a significant signal from voids, AISW = −0.10 ± 0.69, and the signal from clusters, AISW = 1.52 ± 0.72, is at best weakly detected. However, these results are strongly inconsistent with previous claims of ISW signals at many times the level of the ΛCDM prediction. We discuss the comparison of our results with past work in this area and investigate possible explanations for this discrepancy.

Funder

European Research Council

Royal Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3