Dynamics of Colombo’s top: tidal dissipation and resonance capture, with applications to oblique super-Earths, ultra-short-period planets and inspiraling hot Jupiters

Author:

Su Yubo1ORCID,Lai Dong1

Affiliation:

1. Cornell Center for Astrophysics and Planetary Science, Department of Astronomy, Cornell University, Ithaca, NY 14853, USA

Abstract

ABSTRACT We present a comprehensive theoretical study on the spin evolution of a planet under the combined effects of tidal dissipation and gravitational perturbation from an external companion. Such a ‘spin + companion’ system (called Colombo’s top) appears in many [exo]planetary contexts. The competition between the tidal torque (which drives spin-orbit alignment and synchronization) and the gravitational torque from the companion (which drives orbital precession of the planet) gives rise to two possible spin equilibria (‘tidal Cassini Equilibria’, tCE) that are stable and attracting: the ‘simple’ tCE1, which typically has a low spin obliquity, and the ‘resonant’ tCE2, which can have a significant obliquity. The latter arises from a spin-orbit resonance and can be broken when the tidal alignment torque is stronger than the precessional torque from the companion. We characterize the long-term evolution of the planetary spin (both magnitude and obliquity) for an arbitrary initial spin orientation, and develop a new theoretical method to analytically obtain the probability of resonance capture driven by tidal dissipation. Applying our general theoretical results to exoplanetary systems, we find that a super-Earth (SE) with an exterior companion can have a substantial probability of being trapped in the high-obliquity tCE2, assuming that SEs have a wide range of primordial obliquities. We also evaluate the recently proposed ‘obliquity tide’ scenarios for the formation of ultra-short-period Earth-mass planets and for the orbital decay of hot Jupiter WASP-12b. We find in both cases that the probability of resonant capture into tCE2 is generally low and that such a high-obliquity state can be easily broken by the required orbital decay.

Funder

NSF

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3