Affiliation:
1. Kapteyn Astronomical Institute, University of Groningen , Groningen, NL-9700 AV, the Netherlands
2. INAF − Osservatorio Astrofisico di Torino , via Osservatorio 20, I-10025 Pino Torinese (TO), Italy
3. ARC Centre of Excellence for All Sky Astrophysics in Three Dimensions (ASTRO-3D) , Australia
4. Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney , NSW 2006, Australia
5. Space Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218, USA
6. Miller Professor, Miller Institute, UC Berkeley , Berkeley, CA 94720, USA
Abstract
ABSTRACT
We map the 3D kinematics of the Galactic disc out to 3.5 kpc from the Sun, and within 0.75 kpc from the mid-plane of the Galaxy. To this end, we combine high-quality astrometry from Gaia EDR3, with heliocentric line-of-sight velocities from Gaia DR2, and spectroscopic surveys including APOGEE, GALAH, and LAMOST. We construct an axisymmetric model for the mean velocity field, and subtract this on a star-by-star basis to obtain the residual velocity field in the Galactocentric components (Vϕ, VR, Vz), and Vlos. The velocity residuals are quantified using the power spectrum, and we find that the peak power (A/[km s−1]) in the mid-plane (|z| < 0.25 kpc) is (Aϕ, AR, AZ, Alos) = (4.2,8.5,2.6,4.6), at 0.25 < |z|/[kpc] < 0.5, is (Aϕ, AR, AZ, Alos) = (4.0,7.9,3.6,5.3), and at 0.5 < |z|/[kpc] < 0.75, is (Aϕ, AR, AZ, Alos) = (1.9,6.9,5.2,6.4). Our results provide a sophisticated measurement of the streaming motion in the disc and in the individual components. We find that streaming is most significant in VR, and at all heights (|Z|) probed, but is also non-negligible in other components. Additionally, we find that patterns in velocity field overlap spatially with models for spiral arms in the Galaxy. Our simulations show that phase-mixing of disrupting spiral arms can generate such residuals in the velocity field, where the radial component is dominant, just as in real data. We also find that with time evolution, both the amplitude and physical scale of the residual motion decrease.
Funder
ARC
Australian Astronomical Observatory
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献