Galaxy pairs inThe Three Hundredsimulations II: studying bound ones and identifying them via machine learning

Author:

Contreras-Santos Ana1ORCID,Knebe Alexander123ORCID,Cui Weiguang14ORCID,Haggar Roan56ORCID,Pearce Frazer5,Gray Meghan5,De Petris Marco78,Yepes Gustavo12ORCID

Affiliation:

1. Departamento de Física Teórica , Módulo 15, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

2. Centro de Investigación Avanzada en Física Fundamental (CIAFF), Facultad de Ciencias, Universidad Autónoma de Madrid , E-28049 Madrid, Spain

3. International Centre for Radio Astronomy Research, University of Western Australia , 35 Stirling Highway, Crawley, Western Australia 6009, Australia

4. Institute for Astronomy, University of Edinburgh, Royal Observatory , Edinburgh EH9 3HJ, United Kingdom

5. School of Physics & Astronomy, University of Nottingham , Nottingham NG7 2RD, United Kingdom

6. Waterloo Centre for Astrophysics, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada

7. Dipartimento di Fisica, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy

8. I.N.A.F. - Osservatorio Astronomico di Roma , Via Frascati 33, I-00040 Monteporzio Catone, Roma, Italy

Abstract

ABSTRACTUsing the data set of The Three Hundred project, i.e. 324 hydrodynamical resimulations of cluster-sized haloes and the regions of radius 15 ${{h^{-1}\, {\rm Mpc}}}$ around them, we study galaxy pairs in high-density environments. By projecting the galaxies’ 3D coordinates onto a 2D plane, we apply observational techniques to find galaxy pairs. Based on a previous theoretical study on galaxy groups in the same simulations, we are able to classify the observed pairs into ‘true’ or ‘false’, depending on whether they are gravitationally bound or not. We find that the fraction of true pairs (purity) crucially depends on the specific thresholds used to find the pairs, ranging from around 30 to more than 80 per cent in the most restrictive case. Nevertheless, in these very restrictive cases, we see that the completeness of the sample is low, failing to find a significant number of true pairs. Therefore, we train a machine learning algorithm to help us identify these true pairs based on the properties of the galaxies that constitute them. With the aid of the machine learning model trained with a set of properties of all the objects, we show that purity and completeness can be boosted significantly using the default observational thresholds. Furthermore, this machine learning model also reveals the properties that are most important when distinguishing true pairs, mainly the size and mass of the galaxies, their spin parameter, gas content, and shape of their stellar components.

Funder

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interacting galaxies in the IllustrisTNG simulations – VI: Reconstructed orbits, close encounters, and mergers;Monthly Notices of the Royal Astronomical Society;2024-02-28

2. The Three Hundred: Msub–Vcirc relation;Monthly Notices of the Royal Astronomical Society;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3