Tungsten in barium stars

Author:

Roriz M P1ORCID,Lugaro M2345,Junqueira S1,Sneden C6,Drake N A17ORCID,Pereira C B1

Affiliation:

1. Observatório Nacional/MCTI, Rua General José Cristino , 77, 20921-400, Rio de Janeiro , Brazil

2. Konkoly Observatory, HUN-REN Research Centre for Astronomy and Earth Sciences , H-1121 Budapest, Konkoly Thege M. út 15-17 , Hungary

3. CSFK, MTA Centre of Excellence , H-1121 Budapest, Konkoly Thege Miklós út 15-17 , Hungary

4. ELTE Eötvös Loránd University, Institute of Physics , Budapest 1117, Pázmány Péter sétány 1/A , Hungary

5. School of Physics and Astronomy, Monash University , VIC 3800 , Australia

6. Department of Astronomy and McDonald Observatory, The University of Texas , Austin, TX 78712 , USA

7. Laboratory of Observational Astrophysics, Saint Petersburg State University , Universitetski pr. 28, 198504 Saint Petersburg , Russia

Abstract

ABSTRACT Classical barium stars are red giants that receive from their evolved binary companions material exposed to the slow neutron-capture nucleosynthesis, i.e. the s-process. Such a mechanism is expected to have taken place in the interiors of Thermally-Pulsing Asymptotic Giant Branch (TP-AGB) stars. As post-interacting binaries, barium stars figure as powerful tracers of the s-process nucleosynthesis, evolution of binary systems, and mechanisms of mass transfer. The present study is the fourth in a series of high-resolution spectroscopic analyses on a sample of 180 barium stars, for which we report tungsten (W, Z = 74) abundances. The abundances were derived from synthetic spectrum computations of the W i absorption features at 4843.8 and 5224.7 Å. We were able to extract abundances for 94 stars; the measured [W/Fe] ratios range from ∼0.0 to 2.0 dex, increasing with decreasing metallicity. We noticed that in the plane [W/Fe] versus [s/Fe], barium stars follow the same trend observed in post-AGB stars. The observational data were also compared with predictions of the FRUITY and Monash AGB nucleosynthesis models. These expect values between −0.20 and +0.10 dex for the [W/hs] ratios, whereas a larger spread is observed in the program stars, with [W/hs] ranging from −0.40 to +0.60 dex. The stars with high [W/hs] ratios may represent evidence for the operation of the intermediate neuron-capture process at metallicities close to solar.

Funder

CNPq

Hungarian Academy of Sciences

National Science Foundation

Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro

NASA

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3