Rapid parameter estimation of a two-component neutron star model with spin wandering using a Kalman filter

Author:

Meyers Patrick M12ORCID,O’Neill Nicholas J1,Melatos Andrew12,Evans Robin J32

Affiliation:

1. School of Physics, University of Melbourne, Parkville, VIC 3010, Australia

2. OzGrav, University of Melbourne, Parkville, VIC 3010, Australia

3. Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Victoria 3010, Australia

Abstract

Abstract The classic, two-component, crust-superfluid model of a neutron star can be formulated as a noise-driven, linear dynamical system, in which the angular velocities of the crust and superfluid are tracked using a Kalman filter applied to electromagnetic pulse timing data and gravitational wave data, when available. Here it is shown how to combine the marginal likelihood of the Kalman filter and nested sampling to estimate full posterior distributions of the six model parameters, extending previous analyses based on a maximum-likelihood approach. The method is tested across an astrophysically plausible parameter domain using Monte Carlo simulations. It recovers the injected parameters to ≲ 10 per cent for time series containing ∼103 samples, typical of long-term pulsar timing campaigns. It runs efficiently in $\mathcal {O}(1)$ CPU-hr for data sets of the above size. In a present-day observational scenario, when electromagnetic data are available only, the method accurately estimates three parameters: the relaxation time, the ensemble-averaged spin-down of the system, and the amplitude of the stochastic torques applied to the crust. In a future observational scenario, where gravitational wave data are also available, the method also estimates the ratio between the moments of inertia of the crust and the superfluid, the amplitude of the stochastic torque applied to the superfluid, and the crust-superfluid lag. These empirical results are consistent with a formal identifiability analysis of the linear dynamical system.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3