Spikey: self-lensing flares from eccentric SMBH binaries

Author:

Hu Betty X12,D’Orazio Daniel J3ORCID,Haiman Zoltán4,Smith Krista Lynne5,Snios Bradford6ORCID,Charisi Maria7,Di Stefano Rosanne6ORCID

Affiliation:

1. Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA

2. Department of Applied Physics and Applied Math, Columbia University, 500 West 120th Street, New York, NY 10027, USA

3. Institute for Theory and Computation, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA

4. Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA

5. Stanford University KIPAC, SLAC, Menlo Park, CA 94025, USA

6. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

7. TAPIR, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA

Abstract

ABSTRACT We examine the light curves of two quasars, motivated by recent suggestions that a supermassive black hole binary (SMBHB) can exhibit sharp lensing spikes. We model the variability of each light curve as due to a combination of two relativistic effects: the orbital relativistic Doppler boost and gravitational binary self-lensing. In order to model each system, we extend previous Doppler plus self-lensing models to include eccentricity. The first quasar is identified in optical data as a binary candidate with a 20-yr period (Ark 120), and shows a prominent spike. For this source, we rule out the lensing hypothesis and disfavour the Doppler-boost hypothesis due to discrepancies in the measured versus recovered values of the binary mass and optical spectral slope. The second source, which we nickname Spikey, is the rare case of an active galactic nucleus identified in Kepler’s high-quality, high-cadence photometric data. For this source, we find a model, consisting of a combination of Doppler modulation and a narrow symmetric lensing spike, consistent with an eccentric SMBHB with a mass of $M_{\text{tot}} = 3\times 10^{7} {\, \mathrm{M}_{\odot }}$, rest-frame orbital period T = 418 d, eccentricity e = 0.5, and seen at an inclination of 8○ from edge-on. This interpretation can be tested by monitoring Spikey for periodic behaviour and recurring flares in the next few years. In preparation for such monitoring, we present the first X-ray observations of this object taken by the Neil Gehrels Swift Observatory.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3