Mode angular degree identification in subgiant stars with convolutional neural networks based on power spectrum

Author:

Du Minghao1,Bi Shaolan1,Zhang Xianfei1,Li Yaguang123,Li Tanda34,Shi Ruijie1

Affiliation:

1. Department of Astronomy, Beijing Normal University, Beijing 100875, China

2. Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006, Australia

3. Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

4. School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom

Abstract

ABSTRACT The identification of the angular degrees l of oscillation modes is essential for asteroseismology and it depends on visual tagging before fitting power spectra in a so-called peakbagging analysis. In oscillating subgiants, radial (l = 0) mode frequencies are distributed linearly in frequency, while non-radial (l ≥ 1) modes are p–g mixed modes that have a complex distribution in frequency that increases the difficulty of identifying l. In this study, we trained a one-dimensional convolutional neural network to perform this task using smoothed oscillation spectra. By training simulation data and fine-tuning the pre-trained network, we achieved 95 per cent accuracy for Kepler data.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3