Emergence of hot corona and truncated disc in simulations of accreting stellar mass black holes

Author:

Nemmen Rodrigo12ORCID,Vemado Artur13ORCID,Almeida Ivan14ORCID,Garcia Javier56ORCID,Motta Pedro N1

Affiliation:

1. Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo , São Paulo SP 05508-090 , Brazil

2. Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), Stanford University , Stanford, CA 94305 , USA

3. LEEGA , São Paulo SP 04729-080 , Brazil

4. School of Mathematics, Statistics and Physics, Newcastle University , Newcastle NE1 7RU , UK

5. Cahill Center for Astronomy and Astrophysics, California Institute of Technology , Pasadena, CA 91125 , USA

6. NASA Goddard Space Flight Center , Greenbelt, MD 20771 , USA

Abstract

ABSTRACT Stellar mass black holes in X-ray binaries (XRBs) are known to display different states characterized by different spectral and timing properties, understood in the framework of a hot corona coexisting with a thin accretion disc whose inner edge is truncated. There are several open questions related to the nature and properties of the corona, the thin disc, and dynamics behind the hard state. This motivated us to perform 2D hydrodynamical simulations of accretion flows onto a $10 \, \mathrm{M}_\odot$ black hole. We consider a two-temperature plasma, incorporate radiative cooling with bremmstrahlung, synchrotron, and Comptonization losses and approximate the Schwarzschild space–time via a pseudo-Newtonian potential. We varied the mass accretion rate in the range $0.02 \le \dot{M}/\dot{M}_{\rm Edd} \le 0.35$. Our simulations show the natural emergence of a colder truncated thin disc embedded in a hot corona, as required to explain the hard state of XRBs. We found that as $\dot{M}$ increases, the corona contracts and the inner edge of the thin disc gets closer to the event horizon. At a critical accretion rate $0.02 \le \dot{M}_{\text{crit }}/\dot{M}_{\rm Edd} \le 0.06$, the thin disc disappears entirely. We discuss how our simulations compare with XRB observations in the hard state.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

NASA

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3