Determining the Hubble constant without the sound horizon scale: measurements from CMB lensing

Author:

Baxter Eric J1234,Sherwin Blake D34

Affiliation:

1. Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

2. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

3. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK

4. Kavli Institute for Cosmology, Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK

Abstract

ABSTRACT Measurements of the Hubble constant, H0, from the cosmic distance ladder are currently in tension with the value inferred from Planck observations of the cosmic microwave background (CMB) and other high-redshift data sets if a flat Λ cold dark matter (ΛCDM) cosmological model is assumed. One of the few promising theoretical resolutions of this tension is to invoke new physics that changes the sound horizon scale in the early Universe; this can bring CMB and baryon acoustic oscillations (BAO) constraints on H0 into better agreement with local measurements. In this paper, we discuss how a measurement of the Hubble constant can be made from the CMB without using information from the sound horizon scale, rs. In particular, we show how measurements of the CMB lensing power spectrum can place interesting constraints on H0 when combined with measurements of either supernovae or galaxy weak lensing, which constrain the matter density parameter. The constraints arise from the sensitivity of the CMB lensing power spectrum to the horizon scale at matter–radiation equality (in projection); this scale could have a different dependence on new physics than the sound horizon. From an analysis of current CMB lensing data from Planck and Pantheon supernovae with conservative external priors, we derive an rs-independent constraint of $H_0 = 73.5\pm 5.3\, {\rm km}\,{\rm s}^{-1}\,{\rm Mpc}^{-1}$. Forecasts for future CMB surveys indicate that improving constraints beyond an error of $\sigma (H_0) = 3\, {\rm km}\,{\rm s}^{-1}\,{\rm Mpc}^{-1}$ will be difficult with CMB lensing, although applying similar methods to the galaxy power spectrum may allow for further improvements.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observational constraints on early dark energy;International Journal of Modern Physics D;2024-08

2. Can Hubble tension be eased by invoking a finite range for gravity?;Modern Physics Letters A;2024-06-14

3. Agora: Multicomponent simulation for cross-survey science;Monthly Notices of the Royal Astronomical Society;2024-04-18

4. The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters;The Astrophysical Journal;2024-02-01

5. Measuring $$H_0$$ with Spectroscopic Surveys;Springer Series in Astrophysics and Cosmology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3