Dark Energy Survey Year 3 results: cosmology with moments of weak lensing mass maps – validation on simulations

Author:

Gatti M1,Chang C23ORCID,Friedrich O4,Jain B5,Bacon D6,Crocce M78ORCID,DeRose J910,Ferrero I11,Fosalba P78,Gaztanaga E78ORCID,Gruen D91012ORCID,Harrison I13ORCID,Jeffrey N14ORCID,MacCrann N1516ORCID,McClintock T17ORCID,Secco L5,Whiteway L14,Abbott T M C18,Allam S19,Annis J19,Avila S20ORCID,Brooks D14,Buckley-Geer E19ORCID,Burke D L1012,Carnero Rosell A2122ORCID,Carrasco Kind M2324ORCID,Carretero J1,Cawthon R25,da Costa L N2226,De Vicente J21ORCID,Desai S27,Diehl H T19,Doel P14,Eifler T F2829ORCID,Estrada J19,Everett S30,Evrard A E3132ORCID,Frieman J319,García-Bellido J20,Gerdes D W3132,Gruendl R A2324,Gschwend J2226,Gutierrez G19,James D J30,Johnson M D24,Krause E28,Kuehn K3334,Lima M2235,Maia M A G2226,March M5ORCID,Marshall J L36,Melchior P37ORCID,Menanteau F2324,Miquel R138,Palmese A319ORCID,Paz-Chinchón F2324,Plazas A A37ORCID,Sánchez C5ORCID,Sanchez E21,Scarpine V19,Schubnell M32,Santiago S78,Sevilla-Noarbe I21,Smith M39ORCID,Soares-Santos M40ORCID,Suchyta E41ORCID,Swanson M E C24,Tarle G32,Thomas D6ORCID,Troxel M A42ORCID,Zuntz J43ORCID,

Affiliation:

1. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra, Spain

2. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA

3. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

4. Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

5. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

6. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK

7. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain

8. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

9. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA

10. Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, PO Box 2450, Stanford, CA 94305, USA

11. Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, NO-0315 Oslo, Norway

12. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

13. Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK

14. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK

15. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA

16. Department of Physics, The Ohio State University, Columbus, OH 43210, USA

17. Department of Physics, University of Arizona, Tucson, AZ 85721, USA

18. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile

19. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA

20. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain

21. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

22. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro 20921-400, Brazil

23. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA

24. National Center for Supercomputing Applications, 1205 West Clark St, Urbana, IL 61801, USA

25. Physics Department, University of Wisconsin-Madison, 2320 Chamberlin Hall, 1150 University Avenue Madison, WI 53706-1390, USA

26. Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro 20921-400, Brazil

27. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India

28. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

29. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA

30. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

31. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

32. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

33. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia

34. Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA

35. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil

36. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

37. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

38. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

39. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

40. Physics Department, Brandeis University, 415 South Street, Waltham MA, USA

41. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

42. Department of Physics, Duke University Durham, NC 27708, USA

43. Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK

Abstract

ABSTRACT We present a simulated cosmology analysis using the second and third moments of the weak lensing mass (convergence) maps. The second moment, or variances, of the convergence as a function of smoothing scale contains information similar to standard shear two-point statistics. The third moment, or the skewness, contains additional non-Gaussian information. The analysis is geared towards the third year (Y3) data from the Dark Energy Survey (DES), but the methodology can be applied to other weak lensing data sets. We present the formalism for obtaining the convergence maps from the measured shear and for obtaining the second and third moments of these maps given partial sky coverage. We estimate the covariance matrix from a large suite of numerical simulations. We test our pipeline through a simulated likelihood analyses varying 5 cosmological parameters and 10 nuisance parameters and identify the scales where systematic or modelling uncertainties are not expected to affect the cosmological analysis. Our simulated likelihood analysis shows that the combination of second and third moments provides a 1.5 per cent constraint on S8 ≡ σ8(Ωm/0.3)0.5 for DES Year 3 data. This is 20 per cent better than an analysis using a simulated DES Y3 shear two-point statistics, owing to the non-Gaussian information captured by the inclusion of higher order statistics. This paper validates our methodology for constraining cosmology with DES Year 3 data, which will be presented in a subsequent paper.

Funder

Henry Luce Foundation

U.S. Department of Energy

National Science Foundation

Science and Technology Facilities Council

Higher Education Funding Council for England

University of Illinois

University of Chicago

Ohio State University

Financiadora de Estudos e Projetos

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Ministério da Ciência, Tecnologia e Inovação

Deutsche Forschungsgemeinschaft

Argonne National Laboratory

University of California, Santa Cruz

University of Cambridge

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

University College London

University of Edinburgh

Eidgenössische Technische Hochschule Zürich

University of Illinois at Urbana-Champaign

Lawrence Berkeley National Laboratory

University of Michigan

University of Nottingham

University of Pennsylvania

University of Portsmouth

SLAC National Accelerator Laboratory

Stanford University

University of Sussex

Laura and John Arnold Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3