Automated algorithms to build active galactic nucleus classifiers

Author:

Falocco S12ORCID,Carrera F J3,Larsson J1ORCID

Affiliation:

1. KTH Royal Institute of Technology, AlbaNova, SE-106-91 Stockholm, Sweden

2. Nexer Insight AB, Regeringsgatan 29, SE-11153 Stockholm, Sweden

3. Instituto de Física de Cantabria (CSIC-UC), Avenida de los Castros, E-39005 Santander, Spain

Abstract

ABSTRACT We present a machine learning model to classify active galactic nuclei (AGNs) and galaxies (AGN-galaxy classifier) and a model to identify type 1 (optically unabsorbed) and type 2 (optically absorbed) AGN (type 1/2 classifier). We test tree-based algorithms, using training samples built from the X-ray Multi-Mirror Mission–Newton (XMM–Newton) catalogue and the Sloan Digital Sky Survey (SDSS), with labels derived from the SDSS survey. The performance was tested making use of simulations and of cross-validation techniques. With a set of features including spectroscopic redshifts and X-ray parameters connected to source properties (e.g. fluxes and extension), as well as features related to X-ray instrumental conditions, the precision and recall for AGN identification are 94 and 93 per cent, while the type 1/2 classifier has a precision of 74 per cent and a recall of 80 per cent for type 2 AGNs. The performance obtained with photometric redshifts is very similar to that achieved with spectroscopic redshifts in both test cases, while there is a decrease in performance when excluding redshifts. Our machine learning model trained on X-ray features can accurately identify AGN in extragalactic surveys. The type 1/2 classifier has a valuable performance for type 2 AGNs, but its ability to generalize without redshifts is hampered by the limited census of absorbed AGN at high redshift.

Funder

FEDER

Agencia Estatal de Investigación

Unidad de Excelencia María de Maeztu

Alfred P. Sloan Foundation

U.S. Department of Energy

Office of Science

University of Utah

Carnegie Mellon University

University of Tokyo

Lawrence Berkeley National Laboratory

Leibniz-Institut für Astrophysik Potsdam

New Mexico State University

New York University

MCTI

Ohio State University

Pennsylvania State University

Universidad Nacional Autónoma de México

University of Arizona

University of Colorado Boulder

Oxford University

University of Portsmouth

University of Virginia

University of Washington

Vanderbilt University

Yale University

ESO

La Silla Paranal Observatory

Deutsche Forschungsgemeinschaft

ERC

NOVA

NWO

University of Padova

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3