Affiliation:
1. Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Abstract
ABSTRACT
In preparation for future space-borne gravitational-wave (GW) detectors, should the modelling effort focus on high-precision vacuum templates or on the astrophysical environment of the sources? We perform a systematic comparison of the phase contributions caused by (1) known environmental effects in both gaseous and stellar matter backgrounds, or (2) high-order post-Newtonian (PN) terms in the evolution of mHz GW sources during the inspiral stage of massive binaries. We use the accuracy of currently available analytical waveform models as a benchmark value, finding the following trends: the largest unmodelled phase contributions are likely environmental rather than PN for binaries lighter than ∼107/(1 + z)2 M⊙, where z is the redshift. Binaries heavier than ∼108/(1 + z) M⊙ do not require more accurate inspiral waveforms due to low signal-to-noise ratios (SNRs). For high-SNR sources, environmental phase contributions are relevant at low redshift, while high-order vacuum templates are required at z ≳ 4. Led by these findings, we argue that including environmental effects in waveform models should be prioritized in order to maximize the science yield of future mHz detectors.
Funder
Swiss National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献