The evolution of protoplanetary disc radii and disc masses in star-forming regions

Author:

Marchington Bridget1,Parker Richard J1ORCID

Affiliation:

1. Department of Physics and Astronomy, The University of Sheffield , Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK

Abstract

ABSTRACT Protoplanetary discs are crucial to understanding how planets form and evolve, but these objects are subject to the vagaries of the birth environments of their host stars. In particular, photoionizing radiation from massive stars has been shown to be an effective agent in disrupting protoplanetary discs. External photoevaporation leads to the inward evolution of the radii of discs, whereas the internal viscous evolution of the disc causes the radii to evolve outwards. We couple N-body simulations of star-forming regions with a post-processing analysis of disc evolution to determine how the radius and mass distributions of protoplanetary discs evolve in young star-forming regions. To be consistent with observations, we find that the initial disc radii must be of the order of 100 au, even though these discs are readily destroyed by photoevaporation from massive stars. Furthermore, the observed disc radius distribution in the Orion Nebula Cluster (ONC) is more consistent with moderate initial stellar densities (100 M⊙ pc−3), in tension with dynamical models that posit much higher initial densities for the ONC. Furthermore, we cannot reproduce the observed disc radius distribution in the Lupus star-forming region if its discs are subject to external photoevaporation. A more detailed comparison is not possible due to the well-documented uncertainties in determining the ages of pre-main-sequence (disc-hosting) stars.

Funder

Royal Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3