Environmental effects on AGN activity via extinction-free mid-infrared census

Author:

Santos Daryl Joe D1ORCID,Goto Tomotsugu1,Kim Seong Jin1ORCID,Wang Ting-Wen1ORCID,Ho Simon C-C1ORCID,Hashimoto Tetsuya123ORCID,Huang Ting-Chi45ORCID,Lu Ting-Yi1ORCID,On Alvina Y L126ORCID,Wong Yi-Hang Valerie1ORCID,Hsiao Tiger Yu-Yang1,Pollo Agnieszka78,Malkan Matthew A9ORCID,Miyaji Takamitsu10ORCID,Toba Yoshiki111213ORCID,Kilerci-Eser Ece14ORCID,Małek Katarzyna715ORCID,Hwang Ho Seong1617,Jeong Woong-Seob1819,Shim Hyunjin20ORCID,Pearson Chris212223ORCID,Poliszczuk Artem7,Chen Bo Han24

Affiliation:

1. Institute of Astronomy, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu City 30013, Taiwan

2. Centre for Informatics and Computation in Astronomy (CICA), National Tsing Hua University, 101, Section 2. Kuang-Fu Road, Hsinchu, 30013, Taiwan (ROC)

3. Department of Physics, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan

4. Department of Space and Astronautical Science, Graduate University for Advanced Studies, SOKENDAI, Shonankokusaimura, Hayama, Miura District, Kanagawa 240-0193, Japan

5. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan

6. Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK

7. National Centre for Nuclear Research, ul. Pasteura 7, PL-02-093 Warsaw, Poland

8. Astronomical Observatory of the Jagiellonian University, ul. Orla 171, PL-30-244 Cracow, Poland

9. Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA 90095, USA

10. Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 106, Ensenada 22860, Mexico

11. Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

12. Academia Sinica Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, AS/NTU, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan

13. Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan

14. Sabancı University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey

15. Aix Marseille Univ. CNRS, CNES, LAM Marseille, France

16. Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

17. SNU Astronomy Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

18. Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea

19. Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

20. Department of Earth Science Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea

21. RAL Space, STFC Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, UK

22. The Open University, Milton Keynes MK7 6AA, UK

23. University of Oxford, Keble Rd, Oxford, OX1 3RH, UK

24. Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu City 30013, Taiwan

Abstract

ABSTRACT How does the environment affect active galactic nucleus (AGN) activity? We investigated this question in an extinction-free way by selecting 1120 infrared (IR) galaxies in the AKARI North Ecliptic Pole Wide field at redshift z ≤ 1.2. A unique feature of the AKARI satellite is its continuous nine-band IR filter coverage, providing us with an unprecedentedly large sample of IR spectral energy distributions (SEDs) of galaxies. By taking advantage of this, for the first time, we explored the AGN activity derived from SED modelling as a function of redshift, luminosity, and environment. We quantified AGN activity in two ways: AGN contribution fraction (ratio of AGN luminosity to the total IR luminosity), and AGN number fraction (ratio of number of AGNs to the total galaxy sample). We found that galaxy environment (normalized local density) does not greatly affect either definitions of AGN activity of our IRG/LIRG samples (log LTIR ≤ 12). However, we found a different behaviour for ULIRGs (log LTIR > 12). At our highest redshift bin (0.7 ≲ z ≲ 1.2), AGN activity increases with denser environments, but at the intermediate redshift bin (0.3 ≲ z ≲ 0.7), the opposite is observed. These results may hint at a different physical mechanism for ULIRGs. The trends are not statistically significant (p ≥ 0.060 at the intermediate redshift bin, and p ≥ 0.139 at the highest redshift bin). Possible different behaviour of ULIRGs is a key direction to explore further with future space missions (e.g. JWST, Euclid, SPHEREx).

Funder

ESA

Ministry of Science and Technology of Taiwan

National Tsing Hua University

Seoul National University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3