Eclipse mapping of EXO 0748–676: evidence for a massive neutron star

Author:

Knight Amy H1ORCID,Ingram Adam1ORCID,Middleton Matthew2,Drake Jeremy3

Affiliation:

1. Department of Physics, Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

2. School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK

3. Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

Abstract

ABSTRACT Determining the maximum possible neutron star (NS) mass places limits on the equation of state (EoS) of ultra-dense matter. The mass of NSs in low-mass X-ray binaries can be determined from the binary mass function, providing independent constraints are placed on both the binary inclination and mass ratio. In eclipsing systems, they relate via the totality duration. EXO 0748–676 is an eclipsing NS low-mass X-ray binary with a binary mass function estimated using stellar emission lines from the irradiated face of the companion. The NS mass is thus known as a function of mass ratio. Here, we model the X-ray eclipses in several energy bands, utilizing archival XMM–Newton data. We find a narrow region of absorbing material surrounding the companion star is required to explain the energy-dependent eclipses. Therefore, we suggest the companion may be experiencing ablation of its outer layers and that the system could transition into a redback millisecond pulsar. Our fit returns a mass ratio of $q=0.222^{+0.07}_{-0.08}$ and an inclination $i = 76.5 \pm ^{1.4}_{1.1}$. Combining these with the previously measured radial velocity of 410 ± 5 km s−1, derived from Doppler mapping analysis of H α emission during quiescence, returns an NS mass of ∼2 M⊙ even if the line originates as far from the NS as physically possible, favouring hard EoS. The inferred mass increases for a more realistic emission point. However, a ∼1.4 M⊙ canonical NS mass is possible when considering radial velocity values derived from other emission lines observed both during outburst and quiescence.

Funder

Royal Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3