Optimizing galaxy samples for clustering measurements in photometric surveys

Author:

Tanoglidis Dimitrios12ORCID,Chang Chihway12ORCID,Frieman Joshua123

Affiliation:

1. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA

2. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

3. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA

Abstract

ABSTRACT When analysing galaxy clustering in multiband imaging surveys, there is a trade-off between selecting the largest galaxy samples (to minimize the shot noise) and selecting samples with the best photometric redshift (photo-z) precision, which generally includes only a small subset of galaxies. In this paper, we systematically explore this trade-off. Our analysis is targeted towards the third-year data of the Dark Energy Survey (DES), but our methods hold generally for other data sets. Using a simple Gaussian model for the redshift uncertainties, we carry out a Fisher matrix forecast for cosmological constraints from angular clustering in the redshift range z = 0.2–0.95. We quantify the cosmological constraints using a figure of merit (FoM) that measures the combined constraints on Ωm and σ8 in the context of Λ cold dark matter (ΛCDM) cosmology. We find that the trade-off between sample size and photo-z precision is sensitive to (1) whether cross-correlations between redshift bins are included or not, and (2) the ratio of the redshift bin width δz to the photo-z precision σz. When cross-correlations are included and the redshift bin width is allowed to vary, the highest FoM is achieved when δz ∼ σz. We find that for the typical case of 5−10 redshift bins, optimal results are reached when we use larger, less precise photo-z samples, provided that we include cross-correlations. For samples with higher σz, the overlap between redshift bins is larger, leading to higher cross-correlation amplitudes. This leads to the self-calibration of the photo-z parameters and therefore tighter cosmological constraints. These results can be used to help guide galaxy sample selection for clustering analysis in ongoing and future photometric surveys.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3