Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning

Author:

Li Jia-jia123,Wang Jin-liang12,Ji Kai-fan12,Liu Chao24ORCID,Chen Hai-liang12,Han Zhan-wen125ORCID,Chen Xue-fei1253

Affiliation:

1. Yunnan Observatories, Chinese Academy of Sciences , Kunming 650011 , P. R. China

2. School of Astronomy and Space Science, University of Chinese Academy of Sciences , Beijing 100049 , P. R. China

3. International Centre of Supernovae, Yunnan Key Laboratory , Kunming 650216 , P. R. China

4. Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences , Beijing 100101 , P. R. China

5. Center for Astronomical Mega-Science, Chinese Academy of Sciences , Beijing 100012 , P. R. China

Abstract

ABSTRACT The statistical properties of double main sequence (MS) binaries are very important for binary evolution and binary population synthesis. To obtain these properties, we need to identify these MS binaries. In this paper, we have developed a method to differentiate single MS stars from double MS binaries from the Chinese Space Station Telescope (CSST) Survey with machine learning. This method is reliable and efficient to identify binaries with mass ratios between 0.20 and 0.80, which is independent of the mass ratio distribution. But the number of binaries identified with this method is not a good approximation to the number of binaries in the original sample due to the low detection efficiency of binaries with mass ratios smaller than 0.20 or larger than 0.80. Therefore, we have improved this point by using the detection efficiencies of our method and an empirical mass ratio distribution and then can infer the binary fraction in the sample. Once the CSST data are available, we can identify MS binaries with our trained multi-layer perceptron model and derive the binary fraction of the sample.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3