A high-resolution view of the filament of gas between Abell 399 and Abell 401 from the Atacama Cosmology Telescope and MUSTANG-2

Author:

Hincks Adam D1ORCID,Radiconi Federico2,Romero Charles34,Madhavacheril Mathew S56ORCID,Mroczkowski Tony7,Austermann Jason E8,Barbavara Eleonora2,Battaglia Nicholas9,Battistelli Elia2,Bond J Richard10,Calabrese Erminia11,de Bernardis Paolo2,Devlin Mark J4,Dicker Simon R4ORCID,Duff Shannon M8,Duivenvoorden Adriaan J12,Dunkley Jo1213,Dünner Rolando14,Gallardo Patricio A15,Govoni Federica16,Hill J Colin1718,Hilton Matt19,Hubmayr Johannes8,Hughes John P20,Lamagna Luca2,Lokken Martine11021,Masi Silvia2,Mason Brian S22ORCID,McMahon Jeff23242526,Moodley Kavilan1927,Murgia Matteo16ORCID,Naess Sigurd18,Page Lyman12,Piacentini Francesco2,Salatino Maria2829,Sarazin Craig L30,Schillaci Alessandro31,Sievers Jonathan L323334,Sifón Cristóbal35,Staggs Suzanne12,Ullom Joel N8,Vacca Valentina16ORCID,Van Engelen Alexander36,Vissers Michael R8,Wollack Edward J37,Xu Zhilei438ORCID

Affiliation:

1. David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto ON M5S 3H4, Canada

2. Sapienza University of Rome, Physics Department, Piazzale Aldo Moro 5, I-00185 Rome, Italy

3. Green Bank Observatory, 155 Observatory Road, Green Bank, WV 24944, USA

4. Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA

5. Centre for the Universe, Perimeter Institute, Waterloo ON N2L 2Y5, Canada

6. Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90007, USA

7. European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany

8. Quantum Sensors Group, National Institute of Standards and Technology, Boulder, CO 80305, USA

9. Department of Astronomy, Cornell University, Ithaca, NY 14853, USA

10. Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George St., Toronto ON M5S 3H4, Canada

11. School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK

12. Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544, USA

13. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

14. Instituto de Astrofísica and Centro de Astro-Ingeniería, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile

15. Department of Physics, Cornell University, Ithaca, NY 14850, USA

16. INAF – Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (CA), Italy

17. Department of Physics, Columbia University, New York, NY 10027, USA

18. Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA

19. Astrophysics Research Centre, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa

20. Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

21. Dunlap Institute of Astronomy and Astrophysics, 50 St. George St., Toronto ON M5S 3H4, Canada

22. National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA 22903, USA

23. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

24. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA

25. Department of Physics, University of Chicago, Chicago, IL 60637, USA

26. Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA

27. School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa

28. Physics Department, Stanford University, Stanford, CA 94305, USA

29. Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA

30. Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904-4325, USA

31. Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA

32. Department of Physics, McGill University, 3600 rue University, Montréal QC H3A 2T8, Canada

33. McGill Space Institute, McGill University, 3550 rue University, Montréal QC H3A 2A7, Canada

34. School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa

35. Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile

36. School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA

37. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

38. MIT Kavli Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

ABSTRACT We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev–Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the 1.65 arcmin resolution that allows us to clearly separate the profiles of the clusters, whose centres are separated by 37 arcmin, from the gas associated with the filament. A model that fits for only the two clusters is ruled out compared to one that includes a bridge component at >5σ. Using a gas temperature determined from Suzaku X-ray data, we infer a total mass of $(3.3\pm 0.7)\times 10^{14}\, \mathrm{M}_{\odot }$ associated with the filament, comprising about 8 per cent of the entire Abell 399–Abell 401 system. We fit two phenomenological models to the filamentary structure; the favoured model has a width transverse to the axis joining the clusters of ${\sim }1.9\, \mathrm{Mpc}$. When combined with the Suzaku data, we find a gas density of $(0.88\pm 0.24)\times 10^{-4}\, \mathrm{cm}^{-3}$, considerably lower than previously reported. We show that this can be fully explained by a geometry in which the axis joining Abell 399 and Abell 401 has a large component along the line of sight, such that the distance between the clusters is significantly greater than the $3.2\, \mathrm{Mpc}$ projected separation on the plane of the sky. Finally, we present initial results from higher resolution (12.7 arcsec effective) imaging of the bridge with the MUSTANG-2 receiver on the Green Bank Telescope.

Funder

National Science Foundation

National Aeronautics and Space Administration

National Institute of Standards and Technology

CFI

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3