Machine learning to identify ICL and BCG in simulated galaxy clusters

Author:

Marini I1234ORCID,Borgani S1234,Saro A1234ORCID,Murante G23ORCID,Granato G L253ORCID,Ragone-Figueroa C52ORCID,Taffoni G2

Affiliation:

1. Astronomy Unit, Department of Physics, University of Trieste , via Tiepolo 11, I-34131 Trieste, Italy

2. INAF – Osservatorio Astronomico di Trieste , via G. B. Tiepolo 11, I-34143 Trieste, Italy

3. IFPU – Institute for Fundamental Physics of the Universe , Via Beirut 2, I-34014 Trieste, Italy

4. INFN – Sezione di Trieste , Trieste, 34127, Italy

5. Instituto de Astronomía Teórica y Experimental (IATE), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Universidad Nacional de Córdoba , Laprida 854, X5000BGR Córdoba, Argentina

Abstract

ABSTRACT Nowadays, Machine Learning techniques offer fast and efficient solutions for classification problems that would require intensive computational resources via traditional methods. We examine the use of a supervised Random Forest to classify stars in simulated galaxy clusters after subtracting the member galaxies. These dynamically different components are interpreted as the individual properties of the stars in the Brightest Cluster Galaxy (BCG) and IntraCluster Light (ICL). We employ matched stellar catalogues (built from the different dynamical properties of BCG and ICL) of 29 simulated clusters from the DIANOGA set to train and test the classifier. The input features are cluster mass, normalized particle cluster-centric distance, and rest-frame velocity. The model is found to correctly identify most of the stars, while the larger errors are exhibited at the BCG outskirts, where the differences between the physical properties of the two components are less obvious. We investigate the robustness of the classifier to numerical resolution, redshift dependence (up to z = 1), and included astrophysical models. We claim that our classifier provides consistent results in simulations for z < 1, at different resolution levels and with significantly different subgrid models. The phase-space structure is examined to assess whether the general properties of the stellar components are recovered: (i) the transition radius between BCG-dominated and ICL-dominated region is identified at 0.04 R200; (ii) the BCG outskirts (>0.1 R200) is significantly affected by uncertainties in the classification process. In conclusion, this work suggests the importance of employing Machine Learning to speed up a computationally expensive classification in simulations.

Funder

ERC

MIUR

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3