Thermonuclear explosion of a massive hybrid HeCO white dwarf triggered by a He detonation on a companion

Author:

Pakmor R1ORCID,Zenati Y2,Perets H B2ORCID,Toonen S34

Affiliation:

1. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85748 Garching, Germany

2. Physics Department, Technion – Israel Institute of Technology, Haifa 3200004, Israel

3. Institute of Gravitational Wave Astronomy, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK

4. Anton Pannekoek Institute for Astronomy, University of Amsterdam, NL-1090 GE Amsterdam, the Netherlands

Abstract

ABSTRACT Normal type Ia supernovae (SNe) are thought to arise from the thermonuclear explosion of massive (>0.8 M⊙) carbon–oxygen white dwarfs (WDs), although the exact mechanism is debated. In some models, helium accretion on to a carbon–oxygen (CO) WD from a companion was suggested to dynamically trigger a detonation of the accreted helium shell. The helium detonation then produces a shock that after converging on itself close to the core of the CO WD, triggers a secondary carbon detonation, and gives rise to an energetic explosion. However, most studies of such scenarios have been done in one or two dimensions, and/or did not consider self-consistent models for the accretion and the He donor. Here, we make use of detailed 3D simulation to study the interaction of a He-rich hybrid $0.69\, \mathrm{M_\odot }$ HeCO WD with a more massive $0.8\, \mathrm{M_\odot }$ CO WD. We find that accretion from the hybrid WD on to the CO WD gives rise to a helium detonation. However, the helium detonation does not trigger a carbon detonation in the CO WD. Instead, the helium detonation burns through the accretion stream to also burn the helium shell of the donor hybrid HeCO WD. The detonation of its massive helium shell then compresses its CO core, and triggers its detonation and full destruction. The explosion gives rise to a faint, likely highly reddened transient, potentially observable by the Vera Rubin survey, and the high-velocity ($\sim \! 1000\, \mathrm{km s^{-1}}$) ejection of the heated surviving CO WD companion. Pending on uncertainties in stellar evolution, we estimate the rate of such transient to be up to $\sim \! 10{{\ \rm per\ cent}}$ of the rate of type Ia SNe.

Funder

Horizon 2020 Framework Programme

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3