The links between magnetic fields and filamentary clouds – III. Field-regulated mass cumulative functions

Author:

Law C -Y12,Li H -B2,Cao Zhuo2,Ng C -Y3

Affiliation:

1. Department of Space, Earth & Environment, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

2. Department of Physics, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, SAR, Hong Kong

3. Department of Physics, The University of Hong Kong, Pokfulam Road, SAR, Hong Kong

Abstract

ABSTRACT During the past decade, the dynamical importance of magnetic fields in molecular clouds has been increasingly recognized, as observational evidence has accumulated. However, how a magnetic field affects star formation is still unclear. Typical star formation models still treat a magnetic fields as an isotropic pressure, ignoring the fundamental property of dynamically important magnetic fields: their direction. This study builds on our previous work, which demonstrated how the mean magnetic field orientation relative to the global cloud elongation can affect cloud fragmentation. After the linear mass distribution reported earlier, we show here that the mass cumulative function (MCF) of a cloud is also regulated by the field orientation. A cloud elongated closer to the field direction tends to have a shallower MCF: in other words, a higher portion of the gas is at high density. The evidence is consistent with our understanding of the bimodal star formation efficiency discovered earlier, which is also correlated with the field orientation.

Funder

General Research Institute for Nonferrous Metals

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3