Numerical discreteness errors in multispecies cosmological N-body simulations

Author:

Liu Xin12,Emberson J D3,Buehlmann Michael1,Frontiere Nicholas3,Habib Salman13

Affiliation:

1. High Energy Physics Division, Argonne National Laboratory , Lemont, IL 60439, USA

2. Department of Physics, University of Chicago , Chicago, IL 60637, USA

3. Computational Science Division, Argonne National Laboratory , Lemont, IL 60439, USA

Abstract

ABSTRACT We present a detailed analysis of numerical discreteness errors in two-species, gravity-only, cosmological simulations using the density power spectrum as a diagnostic probe. In a simple set-up where both species are initialized with the same total matter transfer function, biased growth of power forms on small scales when the solver force resolution is finer than the mean interparticle separation. The artificial bias is more severe when individual density and velocity transfer functions are applied. In particular, significant large-scale offsets in power are measured between simulations with conventional offset grid initial conditions when compared against converged high-resolution results where the force resolution scale is matched to the interparticle separation. These offsets persist even when the cosmology is chosen so that the two particle species have the same mass, indicating that the error is sourced from discreteness in the total matter field as opposed to unequal particle mass. We further investigate two mitigation strategies to address discreteness errors: the frozen potential method and softened interspecies short-range forces. The former evolves particles under the approximately ‘frozen’ total matter potential in linear theory at early times, while the latter filters cross-species gravitational interactions on small scales in low-density regions. By modelling closer to the continuum limit, both mitigation strategies demonstrate considerable reductions in large-scale power spectrum offsets.

Funder

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3