Looking for MACHOs in the spectra of fast radio bursts

Author:

Katz Andrey12,Kopp Joachim13ORCID,Sibiryakov Sergey145,Xue Wei16

Affiliation:

1. Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

2. Département de Physique Théorique and Center for Astroparticle Physics (CAP), Université de Genève, CH-1211 Genève 4, Switzerland

3. PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, D-55128 Mainz, Germany

4. Laboratory for Particle Physics and Cosmology (LPPC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

5. Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia

6. Department of Physics, University of Florida, Gainesville, FL 32611, USA

Abstract

ABSTRACT We explore a novel search strategy for dark matter in the form of massive compact halo objects (MACHOs) such as primordial black holes or dense mini-haloes in the mass range from $10^{-4}\, \mathrm{M}_{\odot }$ to $0.1\, \mathrm{M}_{\odot }$. These objects can gravitationally lens the signal of fast radio bursts (FRBs), producing a characteristic interference pattern in the frequency spectrum, similar to the previously studied femtolensing signal in gamma-ray burst spectra. Unlike traditional searches using microlensing, FRB lensing will probe the abundance of MACHOs at cosmological distance scales (∼Gpc) rather than just their distribution in the neighbourhood of the Milky Way. The method is thus particularly relevant for dark mini-haloes, which may be inaccessible to microlensing due to their finite spatial extent or tidal disruption in galaxies. We find that the main complication in FRB lensing will be interstellar scintillation in the FRB’s host galaxy and in the Milky Way. Scintillation is difficult to quantify because it heavily depends on turbulence in the interstellar medium, which is poorly understood. We show that, nevertheless, for realistic scintillation parameters, FRB lensing can set competitive limits on compact dark matter object, and we back our findings with explicit simulations.

Funder

H2020 European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3