The infancy of core-collapse supernova remnants

Author:

Gabler Michael1ORCID,Wongwathanarat Annop2,Janka Hans-Thomas2ORCID

Affiliation:

1. Departamento de Astronomía y Astrofísica, Universidad de Valencia, E-46100 Burjassot (Valencia), Spain

2. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany

Abstract

ABSTRACT We present 3D hydrodynamic simulations of neutrino-driven supernovae (SNe) with the Prometheus-HotB code, evolving the asymmetrically expanding ejecta from shock breakout until they reach the homologous expansion phase after roughly one year. Our calculations continue the simulations for two red supergiant and two blue supergiant progenitors by Wongwathanarat et al., who investigated the growth of explosion asymmetries produced by hydrodynamic instabilities during the first second of the explosion and their later fragmentation by Rayleigh–Taylor instabilities. We focus on the late time acceleration and inflation of the ejecta caused by the heating due to the radioactive decay of 56Ni to 56Fe and by a new outward-moving shock, which forms when the reverse shock from the He/H-shell interface compresses the central part of the ejecta. The mean velocities of the iron-rich ejecta increase between 100 and 350 km s−1 (∼8–30 per cent), and the fastest 1 per cent of the iron accelerates by up to ∼1000 km s−1 (∼20–25 per cent). This ‘Ni-bubble effect’, known from 1D models, accelerates the bulk of the nickel in our 3D models and causes an inflation of the initially overdense Ni-rich clumps, which leads to underdense, extended fingers, enveloped by overdense skins of compressed surrounding matter. We also provide volume and surface filling factors as well as a spherical harmonics analysis to characterize the spectrum of Ni-clump sizes quantitatively. Three of our four models give volume filling factors larger than 0.3, consistent with what is suggested for SN 1987A by observations.

Funder

Generalitat Valenciana

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3